Richardson extrapolation and higher order QMC

Takashi Goda

School of Engineering, University of Tokyo

MCM 2019

Partly joint with Josef Dick and Takehito Yoshiki
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules
Quasi-Monte Carlo

- Approximate
 \[I(f) = \int_{[0,1)^s} f(x) \, dx, \]
 where \(f: [0,1)^s \to \mathbb{R} \) is integrable.

- Choose an \(N \)-element point set \(P \subset [0,1)^s \) and approximate \(I(f) \) by
 \[Q_P(f) = \frac{1}{N} \sum_{x \in P} f(x). \]

 This is called a quasi-Monte Carlo (QMC) integration over \(P \).
Digital nets in base 2

- Let $m, n \in \mathbb{N} := \{1, 2, \ldots\}$.
- Let $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$ ($\mathbb{F}_2 := \{0, 1\}$, the two-element field).
Digital nets in base 2

- Let \(m, n \in \mathbb{N} := \{1, 2, \ldots\} \).
- Let \(C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m} \) (\(\mathbb{F}_2 := \{0, 1\} \), the two-element field).
- Denote the dyadic expansion of \(0 \leq h < 2^m \) by

\[
h = (\eta_{m-1} \ldots \eta_1 \eta_0)_2.
\]
Digital nets in base 2

- Let $m, n \in \mathbb{N} := \{1, 2, \ldots \}$.
- Let $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$ ($\mathbb{F}_2 := \{0, 1\}$, the two-element field).
- Denote the dyadic expansion of $0 \leq h < 2^m$ by
 \[h = (\eta_{m-1} \ldots \eta_1 \eta_0)_2. \]

For $1 \leq j \leq s$, let
 \[x_j = (0.\xi_1^{(j)} \ldots \xi_n^{(j)} 00 \ldots)_2, \]
where
 \[
 \begin{pmatrix}
 \xi_1^{(j)} \\
 \vdots \\
 \xi_n^{(j)}
 \end{pmatrix}
 = C_j
 \begin{pmatrix}
 \eta_0 \\
 \vdots \\
 \eta_{m-1}
 \end{pmatrix}
 \in \mathbb{F}_2^n.
 \]

This gives a point $\mathbf{x} = (x_1, \ldots, x_s) \in [0, 1)^s$.
Digital nets in base 2

- Let $m, n \in \mathbb{N} := \{1, 2, \ldots \}$.
- Let $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$ ($\mathbb{F}_2 := \{0, 1\}$, the two-element field).
- Denote the dyadic expansion of $0 \leq h < 2^m$ by

$$h = (\eta_{m-1} \ldots \eta_1 \eta_0)_2.$$

For $1 \leq j \leq s$, let

$$x_j = (0.\xi_1^{(j)} \ldots \xi_n^{(j)} 00 \ldots)_2,$$

where

$$\begin{pmatrix} \xi_1^{(j)} \\ \vdots \\ \xi_n^{(j)} \end{pmatrix} = C_j \begin{pmatrix} \eta_0 \\ \vdots \\ \eta_{m-1} \end{pmatrix} \in \mathbb{F}_2^n.$$

This gives a point $x = (x_1, \ldots, x_s) \in [0, 1)^s$.
- Running through all $0 \leq h < 2^m$, we get a 2^m-element point set P called a digital net over \mathbb{F}_2.
Digital sequences in base 2

- Let $C_1, \ldots, C_s \in \mathbb{F}_2^{\mathbb{N} \times \mathbb{N}}$, where every column is assumed to have only finite non-zero elements.
- Denote the dyadic expansion of $h \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ by
 \[
 h = (\ldots \eta_1 \eta_0)_2.
 \]
 where all but finite number of η_i are 0. For $1 \leq j \leq s$, let
 \[
 x_j = (0.\xi_1^{(j)} \xi_2^{(j)} \ldots)_2,
 \]
 where
 \[
 \begin{pmatrix}
 \xi_1^{(j)} \\
 \xi_2^{(j)} \\
 \vdots
 \end{pmatrix}
 = C_j
 \begin{pmatrix}
 \eta_0 \\
 \eta_1 \\
 \vdots
 \end{pmatrix}
 \in \mathbb{F}_2^\mathbb{N}.
 \]
 This gives a point $x = (x_1, \ldots, x_s) \in [0, 1)^s$.
- This way we get an infinite sequence of points S called a digital sequence over \mathbb{F}_2.
Some remarks

- “Goodness” (undefined) of digital nets/sequences is determined by generating matrices C_1, \ldots, C_s.

- For nets, m determines total number of points, while n determines precision of each point.

- For sequences, the assumption that every column has only finite non-zero elements is to ensure that each point has finite precision.
Precision?

• For classical QMC where “goodness” is measured by discrepancy, it is usual to set $n = m$ (square matrices) for nets, or consider upper-triangular matrices for sequences.

• For higher order QMC where “goodness” is measured by the worst-case error for a class of smooth functions, we need higher precision. Typically, $n = \alpha m$ for nets (α: dominating mixed smoothness of functions).
Precision?

- For classical QMC where “goodness” is measured by *discrepancy*, it is usual to set \(n = m \) (square matrices) for nets, or consider upper-triangular matrices for sequences.

- For higher order QMC where “goodness” is measured by the worst-case error for a class of smooth functions, we need higher precision. Typically, \(n = \alpha m \) for nets (\(\alpha \): dominating mixed smoothness of functions).

Aim of this talk

is to show that Richardson extrapolation can be used as a technique to reduce necessary precision of higher order QMC from \(\alpha m \) to \(m \).
Precision?

- For classical QMC where “goodness” is measured by discrepancy, it is usual to set $n = m$ (square matrices) for nets, or consider upper-triangular matrices for sequences.
- For higher order QMC where “goodness” is measured by the worst-case error for a class of smooth functions, we need higher precision. Typically, $n = \alpha m$ for nets (α: dominating mixed smoothness of functions).

Aim of this talk

is to show that Richardson extrapolation can be used as a technique to reduce necessary precision of higher order QMC from αm to m.

Implication

- Possibility to try large values of α w/o suffering from round-off error.
- Search space for C_1, \ldots, C_s is significantly reduced.
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules
Local discrepancy function

For an N-element point set P and $y \in [0, 1)^s$, let

$$\Delta_P(y) := \frac{1}{N} \sum_{x \in P} 1_{x \in [0, y)} - \lambda([0, y]),$$

where λ denotes the Lebesgue measure.
Discrepancy and Koksma-Hlawka inequality

For $1 \leq p \leq \infty$, the L_p-discrepancy of P is defined by

$$L_p(P) := \left(\int_{[0,1]^s} |\Delta_P(y)|^p \, dy \right)^{1/p}.$$

When $p = \infty$, the obvious modification is needed.
For $1 \leq p \leq \infty$, the L_p-discrepancy of P is defined by

$$L_p(P) := \left(\int_{[0,1)^s} |\Delta_P(y)|^p \, dy \right)^{1/p}.$$

When $p = \infty$, the obvious modification is needed.

The integration error is bounded by

$$|Q_P(f) - I(f)| \leq V_{HK}(f)L_\infty(P)$$

where $V_{HK}(f)$ is the Hardy-Krause variation of f.

Discrepancy and Koksma-Hlawka inequality

- For $1 \leq p \leq \infty$, the L_p-discrepancy of P is defined by

$$L_p(P) := \left(\int_{[0,1]^s} |\Delta_P(y)|^p \, dy \right)^{1/p}.$$

When $p = \infty$, the obvious modification is needed.

- The integration error is bounded by

$$|Q_P(f) - I(f)| \leq V_{HK}(f)L_\infty(P)$$

where $V_{HK}(f)$ is the Hardy-Krause variation of f.

Main focus on classical QMC

How to construct digital nets/sequences with small $L_\infty(P)$.
Quality measure: t-value

- Let t be an integer such that, for any choice $d_1, \ldots, d_s \geq 0$ with $d_1 + \cdots + d_s = m - t$,
 - the first d_1 rows of C_1
 - \[\vdots \]
 - the first d_s rows of C_s
are linearly independent over \mathbb{F}_2. P is called a digital (t, m, s)-net.
Quality measure: t-value

- An equi-distribution property of digital (t, m, s)-nets: every dyadic elementary box of the form

$$\prod_{j=1}^{s} \left[\frac{a_j}{2^{c_j}}, \frac{a_j + 1}{2^{c_j}} \right]$$

with

$$c_1, \ldots, c_s \geq 0,$$
$$c_1 + \cdots + c_s = m - t,$$
$$0 \leq a_j < 2^{c_j}$$

contains exactly 2^t points.
Quality measure: t-value

- An equi-distribution property of digital (t, m, s)-nets: every dyadic elementary box of the form

$$
\prod_{j=1}^{s} \left[\frac{a_j}{2^{c_j}}, \frac{a_j + 1}{2^{c_j}} \right)
$$

contains exactly 2^t points.

- Let t be an integer such that, for any $m \geq t$, the first 2^m points of S are a digital (t, m, s)-net. S is called a digital (t, s)-sequence.
If P is a digital (t, m, s)-net over \mathbb{F}_2,

$$L_\infty(P) \leq C_{s,t} \frac{(\log N)^{s-1}}{N} \quad \text{with} \quad N = 2^m.$$

If P is the first N points of a digital (t, s)-sequence over \mathbb{F}_2,

$$L_\infty(P) \leq D_{s,t} \frac{(\log N)^s}{N},$$

for all $N \geq 2$.

t-value and star-discrepancy
Explicit construction

- For $s = 1$, C_1 can be the identity matrix, which generates the famous digital $(0, 1)$-sequence called *van der Corput sequence*.
Explicit construction

- For $s = 1$, C_1 can be the identity matrix, which generates the famous digital $(0, 1)$-sequence called *van der Corput sequence*.

- For $s = 2$, C_1 and C_2 can be

$$C_1 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{pmatrix},$$

which generates a digital $(0, m, 2)$-net, known as the *Hammersley point set*. Not extensible in m.
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for \(m = 6 \)
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Figure: Hammersley point set for $m = 6$
Explicit construction

Let $p_1, p_2, \ldots \in \mathbb{F}_2[x]$ be a sequence of distinct primitive/irreducible polynomials over \mathbb{F}_2 with $e_1 \leq e_2 \leq \cdots$ where $e_j = \text{deg}(p_j)$.

(Sobol’ 1967; Niederreiter 1988; Tezuka 1993)
Explicit construction

- Let $p_1, p_2, \ldots \in \mathbb{F}_2[x]$ be a sequence of distinct primitive/irreducible polynomials over \mathbb{F}_2 with $e_1 \leq e_2 \leq \cdots$ where $e_j = \deg(p_j)$.

- For each j, $C_j = (c_{k,l}^{(j)})$ is given by the coefficients of the following Laurent series:

\[
\begin{align*}
\frac{x^{e_j-1}}{p_j(x)} &= \frac{c_{1,1}^{(j)}}{x} + \frac{c_{1,2}^{(j)}}{x^2} + \cdots \\
\vdots \\
\frac{1}{p_j(x)} &= \frac{c_{e_j,1}^{(j)}}{x} + \frac{c_{e_j,2}^{(j)}}{x^2} + \cdots \\
\frac{x^{e_j-1}}{(p_j(x))^2} &= \frac{c_{e_j+1,1}^{(j)}}{x} + \frac{c_{e_j+1,2}^{(j)}}{x^2} + \cdots \\
\vdots
\end{align*}
\]

(Sobol’ 1967; Niederreiter 1988; Tezuka 1993)
Explicit construction

All matrices $C_j \in \mathbb{F}_2^{N \times N}$ are upper triangular and generate a digital (t, s)-sequence with $t = (e_1 - 1) + \cdots + (e_s - 1)$.
(I used a C implementation for this sequence in at least more than 58636 dimensions due to Tomohiko Hironaka.)

Figure: 2D projections of the first 2^6 points of the Niederreiter sequence.
Let \(p \in \mathbb{F}_2[x] \) be irreducible with \(\text{deg}(p) = m \)

Let \(q = (q_1, \ldots, q_s) \in (\mathbb{F}_2[x])^s \) with \(\text{deg}(q_j) < m \).
Polynomial lattice point sets (Niederreiter, 1992)

- Let $p \in \mathbb{F}_2[x]$ be irreducible with $\text{deg}(p) = m$
- Let $q = (q_1, \ldots, q_s) \in (\mathbb{F}_2[x])^s$ with $\text{deg}(q_j) < m$. For each j, C_j is given by the square Hankel matrix

\[
C_j = \begin{pmatrix}
 a_1^{(j)} & a_2^{(j)} & \cdots & a_m^{(j)} \\
 a_2^{(j)} & a_3^{(j)} & \cdots & a_{m+1}^{(j)} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_m^{(j)} & a_{m+1}^{(j)} & \cdots & a_{2m-1}^{(j)}
\end{pmatrix} \in \mathbb{F}_2^{m \times m}
\]

where $a_1^{(j)}, a_2^{(j)}, \ldots$ are the coefficients of the Laurent series

\[
\frac{q_j(x)}{p(x)} = \frac{a_1^{(j)}}{x} + \frac{a_2^{(j)}}{x^2} + \cdots.
\]
Polynomial lattice point sets (Niederreiter, 1992)

- Let \(p \in \mathbb{F}_2[x] \) be irreducible with \(\text{deg}(p) = m \)
- Let \(q = (q_1, \ldots, q_s) \in (\mathbb{F}_2[x])^s \) with \(\text{deg}(q_j) < m \). For each \(j \), \(C_j \) is given by the square Hankel matrix

\[
C_j = \begin{pmatrix}
a_1^{(j)} & a_2^{(j)} & \cdots & a_m^{(j)} \\
a_2^{(j)} & a_3^{(j)} & \cdots & a_{m+1}^{(j)} \\
\vdots & \vdots & \ddots & \vdots \\
a_m^{(j)} & a_{m+1}^{(j)} & \cdots & a_{2m-1}^{(j)}
\end{pmatrix} \in \mathbb{F}_2^{m \times m}
\]

where \(a_1^{(j)}, a_2^{(j)}, \ldots \) are the coefficients of the Laurent series

\[
\frac{q_j(x)}{p(x)} = \frac{a_1^{(j)}}{x} + \frac{a_2^{(j)}}{x^2} + \cdots.
\]

- The resulting digital net is called a \textit{polynomial lattice point set} \(P(p, q) \). Usually the vector \(q \) is constructed by a (fast) computer search algorithm (Nuyens & Cools, 2006;
Polynomial lattice point sets (Niederreiter, 1992)

- Let $p \in \mathbb{F}_2[x]$ be irreducible with $\deg(p) = m$
- Let $q = (q_1, \ldots, q_s) \in (\mathbb{F}_2[x])^s$ with $\deg(q_j) < m$. For each j, C_j is given by the square Hankel matrix

$$ C_j = \begin{pmatrix} a_1^{(j)} & a_2^{(j)} & \cdots & a_m^{(j)} \\ a_2^{(j)} & a_3^{(j)} & \cdots & a_{m+1}^{(j)} \\ \vdots & \vdots & \ddots & \vdots \\ a_m^{(j)} & a_{m+1}^{(j)} & \cdots & a_{2m-1}^{(j)} \end{pmatrix} \in \mathbb{F}_2^{m \times m} $$

where $a_1^{(j)}$, $a_2^{(j)}$, \ldots are the coefficients of the Laurent series

$$ \frac{q_j(x)}{p(x)} = \frac{a_1^{(j)}}{x} + \frac{a_2^{(j)}}{x^2} + \cdots. $$

- The resulting digital net is called a \textit{polynomial lattice point set} $P(p, q)$. Usually the vector q is constructed by a (fast) computer search algorithm (Nuyens & Cools, 2006; P. Kritzer, this afternoon!).
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules
What if f is smooth

- In some applications, such as PDEs with random coefficients, f can be smooth. A proper design of QMC point sets enables higher order convergence of the integration error than $O(1/N)$ as expected from the KH inequality.
- So far, QMC point sets achieving higher order convergence for non-periodic smooth functions are
 1. Higher order digital nets/sequences (Dick, 2008; ...), and
 2. Tent-transformed lattice point sets (Hickernell, 2002; ...).
What if f is smooth

- In some applications, such as PDEs with random coefficients, f can be smooth. A proper design of QMC point sets enables higher order convergence of the integration error than $O(1/N)$ as expected from the KH inequality.

- So far, QMC point sets achieving higher order convergence for non-periodic smooth functions are

 1. Higher order digital nets/sequences (Dick, 2008; ...), and
 2. Tent-transformed lattice point sets (Hickernell, 2002; ...).

- In this talk, I will focus on higher order digital nets/sequences. The contents of this section are mostly developed by Dick (2008). Please refer to a recent review by G. & Suzuki (arXiv:1903.12353).
Let $\alpha \in \mathbb{N}$.

Let t be an integer such that, for any choice $1 \leq d_{j,v_j} < \cdots < d_{j,1} \leq \alpha m$, $0 \leq v_j \leq \alpha m$, $1 \leq j \leq s$, with

$$
\sum_{j=1}^{s} \sum_{i=1}^{\min(v_j,\alpha)} d_{j,i} = \alpha m - t,
$$

the $d_{1,v_1}, \ldots, d_{1,1}$-th rows of C_1

\vdots

the $d_{s,v_s}, \ldots, d_{s,1}$-th rows of C_s

are linearly independent over \mathbb{F}_2. P is called an order α digital (t, m, s)-net.
Quality measure: high order t-value

- Order α digital (t, m, s)-nets hold equi-distribution properties: union of dyadic elementary boxes contains the fair number of points (shown later visually).
Quality measure: high order t-value

- Order α digital (t, m, s)-nets hold equi-distribution properties: union of dyadic elementary boxes contains the fair number of points (shown later visually).

- Let t be an integer such that, for any $\alpha m \geq t$, the first 2^m points of S are an order α digital (t, m, s)-net. S is called an order α digital (t, s)-sequence.
Explicit construction

Define $\mathcal{D}_\alpha : [0, 1)^\alpha \to [0, 1)$ by

\[
\begin{aligned}
 x_1 &= (0.\xi^{(1)}_1 \xi^{(1)}_2 \xi^{(1)}_3 \ldots)_2 \\
 x_2 &= (0.\xi^{(2)}_1 \xi^{(2)}_2 \xi^{(2)}_3 \ldots)_2 \\
 &\vdots \\
 x_\alpha &= (0.\xi^{(\alpha)}_1 \xi^{(\alpha)}_2 \xi^{(\alpha)}_3 \ldots)_2 \\
\end{aligned}
\]

$\mapsto (0.\xi^{(1)}_1 \xi^{(2)}_1 \ldots \xi^{(\alpha)}_1 \xi^{(1)}_2 \xi^{(2)}_2 \ldots \xi^{(\alpha)}_2 \ldots)_2$.
Explicit construction

- Define $\mathcal{D}_\alpha : [0, 1)^\alpha \to [0, 1)$ by

$$
\begin{align*}
 x_1 &= (0.\xi_1^{(1)} \xi_2^{(1)} \xi_3^{(1)} \ldots)_2 \\
 x_2 &= (0.\xi_1^{(2)} \xi_2^{(2)} \xi_3^{(2)} \ldots)_2 \\
 &\vdots \\
 x_\alpha &= (0.\xi_1^{(\alpha)} \xi_2^{(\alpha)} \xi_3^{(\alpha)} \ldots)_2
\end{align*}
$$

- For $x \in [0, 1)^{\alpha s}$, let

$$
\mathcal{D}_\alpha(x) = (\mathcal{D}_\alpha(x_1, \ldots, x_\alpha), \mathcal{D}_\alpha(x_{\alpha+1}, \ldots, x_{2\alpha}), \ldots, \mathcal{D}_\alpha(x_{\alpha(s-1)+1}, \ldots, x_{\alpha s})) \in [0, 1)^s.
$$
Explicit construction

- Define $D_\alpha : [0, 1)^\alpha \rightarrow [0, 1)$ by

\[
\begin{align*}
 x_1 &= (0.\xi_1^{(1)} \xi_2^{(1)} \xi_3^{(1)} \ldots)_2 \\
 x_2 &= (0.\xi_1^{(2)} \xi_2^{(2)} \xi_3^{(2)} \ldots)_2 \\
 &\vdots \\
 x_\alpha &= (0.\xi_1^{(\alpha)} \xi_2^{(\alpha)} \xi_3^{(\alpha)} \ldots)_2
\end{align*}
\]

- For $\mathbf{x} \in [0, 1)^{\alpha s}$, let

\[
D_\alpha(\mathbf{x}) = (D_\alpha(x_1, \ldots, x_\alpha), D_\alpha(x_{\alpha+1}, \ldots, x_{2\alpha}), \ldots, D_\alpha(x_{\alpha(s-1)+1}, \ldots, x_{\alpha s})) \in [0, 1)^{s}.
\]

For a digital $(t, m, \alpha s)$-net P, we write

\[
D_\alpha(P) = \{D_\alpha(\mathbf{x}) \mid \mathbf{x} \in P\}.
\]
Another look at construction

Let P be a digital $(t, m, \alpha s)$-net with $C_1, \ldots, C_{\alpha s} \in \mathbb{F}_2^{m \times m}$. We write

$$C_1 = \begin{pmatrix} c_1^{(1)} \\ \vdots \\ c_m^{(1)} \end{pmatrix}, \quad C_2 = \begin{pmatrix} c_1^{(2)} \\ \vdots \\ c_m^{(2)} \end{pmatrix}, \ldots, \quad C_\alpha = \begin{pmatrix} c_1^{(\alpha)} \\ \vdots \\ c_m^{(\alpha)} \end{pmatrix}, \ldots$$
Another look at construction

Let P be a digital $(t, m, \alpha s)$-net with $C_1, \ldots, C_{\alpha s} \in \mathbb{F}_2^{m \times m}$. We write

$$C_1 = \begin{pmatrix} c_1^{(1)} \\ \vdots \\ c_m^{(1)} \end{pmatrix}, \quad C_2 = \begin{pmatrix} c_1^{(2)} \\ \vdots \\ c_m^{(2)} \end{pmatrix}, \ldots, \quad C_\alpha = \begin{pmatrix} c_1^{(\alpha)} \\ \vdots \\ c_m^{(\alpha)} \end{pmatrix}, \ldots$$

$D_\alpha(P)$ is a digital net with $D_1, \ldots, D_s \in \mathbb{F}_2^{\alpha m \times m}$ where

$$D_1 = \begin{pmatrix} c_1^{(1)} \\ c_1^{(2)} \\ \vdots \\ c_1^{(\alpha)} \\ c_m^{(1)} \\ \vdots \\ c_m^{(\alpha)} \end{pmatrix}, \quad D_2 = \begin{pmatrix} c_1^{(\alpha+1)} \\ c_1^{(\alpha+2)} \\ \vdots \\ c_1^{(2\alpha)} \\ c_m^{(\alpha+1)} \\ \vdots \\ c_m^{(2\alpha)} \end{pmatrix}, \ldots$$
High order t-value

- For a digital $(t, m, \alpha s)$-net P, $\mathcal{D}_\alpha(P)$ is an order α digital (t', m, s)-net with

$$t' \leq \alpha \min \left\{ m, t + \left\lfloor \frac{s(\alpha - 1)}{2} \right\rfloor \right\}.$$

- For a digital $(t, \alpha s)$-sequences S, $\mathcal{D}_\alpha(S)$ is an order α digital (t', s)-sequences with

$$t' \leq \alpha t + \frac{s\alpha(\alpha - 1)}{2}.$$
Interlaced Sobol’ point sets with $\alpha = 2$
Interlaced Sobol’ point sets with \(\alpha = 2 \)
Interlaced Sobol’ point sets with $\alpha = 2$
Interlaced polynomial lattice point sets

- Let $p \in \mathbb{F}_2[x]$ be irreducible with $\deg(p) = m$, and let $q = (q_1, \ldots, q_\alpha s) \in (\mathbb{F}_2[x])^\alpha s$ with $\deg(q_j) < m$.
- An interlaced polynomial lattice point set is just $D_\alpha(P(p, q))$.

Interlaced polynomial lattice point sets

- Let $p \in \mathbb{F}_2[x]$ be irreducible with $\deg(p) = m$, and let $q = (q_1, \ldots, q_{\alpha s}) \in (\mathbb{F}_2[x])^{\alpha s}$ with $\deg(q_j) < m$.
- An \textit{interlaced polynomial lattice point set} is just $\mathcal{D}_\alpha(P(p, q))$.

The vector q can be constructed component by component. In the simplest case, the necessary construction cost is of $O(\alpha s N \log N)$ with $O(N)$ memory (G. & Dick, 2015; G., 2015). In applications to PDEs with random coefficients, the criterion sometimes becomes a bit complicated, requiring $O(\alpha s N \log N + \alpha^2 s^2 N)$ construction cost with $O(\alpha s N)$ memory (Dick, Kuo, Le Gia, Nuyens & Schwab, 2014).
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules
Walsh functions

- For $k = (\ldots \kappa_1 \kappa_0)_2 \in \mathbb{N}_0$, the k-th Walsh function is defined by

$$\text{wal}_k(x) = (-1)^{\kappa_0 \xi_1 + \kappa_1 \xi_2 + \cdots},$$

where $x = (0.\xi_1 \xi_2 \ldots)_2 \in [0, 1)$, unique in the sense that infinitely many ξ_i are equal to 0.
Walsh functions

For $k = (\ldots \kappa_1 \kappa_0)_2 \in \mathbb{N}_0$, the k-th Walsh function is defined by

$$\text{wal}_k(x) = (-1)^{\kappa_0 \xi_1 + \kappa_1 \xi_2 + \ldots},$$

where $x = (0.\xi_1\xi_2\ldots)_2 \in [0, 1)$, unique in the sense that infinitely many ξ_i are equal to 0.

For $s \geq 1$ and $k = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$, the k-th Walsh function is defined by

$$\text{wal}_k(x) = \prod_{j=1}^{s} \text{wal}_{k_j}(x_j).$$
Walsh functions

Figure: The k-th Walsh functions for $k = 0, 1, 2, 3$
Walsh functions

Figure: The k-th Walsh functions for $k = 4, 5, 6, 7$
Walsh functions

- Every Walsh function is a piecewise constant function.
Walsh functions

- Every Walsh function is a piecewise constant function.

- Importantly the system of Walsh functions $\{\text{wal}_k \mid k \in \mathbb{N}_0^s\}$ is a complete orthonormal basis in $L_2([0,1)^s)$. Thus we have a Walsh series of f:

$$\sum_{k \in \mathbb{N}_0^s} \hat{f}(k)\text{wal}_k(x)$$

where

$$\hat{f}(k) = \int_{[0,1)^s} f(x)\text{wal}_k(x) \, dx.$$
Dual nets

For a digital net P with $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$, the dual net is defined by

$$P^\perp = \left\{ k \in \mathbb{N}_0^s \mid C_1^\top \begin{pmatrix} \kappa_{1,0} \\ \vdots \\ \kappa_{1,n-1} \end{pmatrix} \oplus \cdots \oplus C_s^\top \begin{pmatrix} \kappa_{s,0} \\ \vdots \\ \kappa_{s,n-1} \end{pmatrix} = 0 \in \mathbb{F}_2^m \right\},$$

where we write

$$k_j = (\ldots \kappa_{j,1} \kappa_{j,0})_2.$$
Dual nets

- For a digital net P with $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$, the dual net is defined by

$$P^\perp = \left\{ k \in \mathbb{N}_0^s \mid C_1^\top \begin{pmatrix} \kappa_{1,0} \\ \vdots \\ \kappa_{1,n-1} \end{pmatrix} \oplus \cdots \oplus C_s^\top \begin{pmatrix} \kappa_{s,0} \\ \vdots \\ \kappa_{s,n-1} \end{pmatrix} = 0 \in \mathbb{F}_2^m \right\},$$

where we write

$$k_j = (\ldots \kappa_{j,1} \kappa_{j,0})_2.$$

Trivial fact

$k \in P^\perp$ if $2^n \mid k$, i.e., $2^n \mid k_j$ for all $j = 1, \ldots, s$.
Character property

- Most of the Walsh functions can be integrated exactly:

\[
\frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) = \begin{cases}
1 & \text{if } k \in P^\perp, \\
0 & \text{otherwise.}
\end{cases}
\]
Character property

- *Most* of the Walsh functions can be integrated exactly:

\[
\frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) = \begin{cases}
1 & \text{if } k \in P^\perp, \\
0 & \text{otherwise.}
\end{cases}
\]

- I will also use the following fact:

\[
\frac{1}{2^n} \sum_{i=0}^{2^n-1} \text{wal}_k \left(\frac{i}{2^n} \right) = \frac{1}{2^n} \sum_{\xi_0, \ldots, \xi_{n-1} \in \{0,1\}} \prod_{i=1}^{n} (-1)^{\kappa_{i-1} \xi_i}
\]

\[
= \frac{1}{2^n} \prod_{i=1}^{n} \sum_{\xi_i \in \{0,1\}} (-1)^{\kappa_{i-1} \xi_i}
\]

\[
= \begin{cases}
1 & \text{if } \kappa_0 = \ldots = \kappa_{n-1} = 0, \text{ i.e., if } 2^n \mid k, \\
0 & \text{otherwise.}
\end{cases}
\]
Decomposition of integration error

For a digital net P with $C_1, \ldots, C_s \in \mathbb{R}^{n \times m}$, we have

$$Q_P(f) - I(f) = \frac{1}{2^m} \sum_{x \in P} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{val}_k(x) - \hat{f}(0)$$
Decomposition of integration error

For a digital net \(P \) with \(C_1, \ldots, C_s \in \mathbb{R}^{n \times m}_2 \), we have

\[
Q_P(f) - l(f) = \frac{1}{2^m} \sum_{x \in P} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k(x) - \hat{f}(0)
\]

\[
= \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) - \hat{f}(0)
\]
Decomposition of integration error

For a digital net P with $C_1, \ldots, C_s \in \mathbb{R}_2^{n \times m}$, we have

$$Q_P(f) - I(f) = \frac{1}{2^m} \sum_{x \in P} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in P^\perp \setminus \{0\}} \hat{f}(k)$$
Decomposition of integration error

For a digital net P with $C_1, \ldots, C_s \in \mathbb{R}_2^{n \times m}$, we have

$$Q_P(f) - I(f) = \frac{1}{2^m} \sum_{x \in P} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in P^\perp \setminus \{0\}} \hat{f}(k)$$

$$= \sum_{k \in P^\perp \setminus \{0\} \atop 2^n \mid k} \hat{f}(k) + \sum_{k \in P^\perp \setminus \{0\} \atop 2^n \not\mid k} \hat{f}(k)$$
Decomposition of integration error

For a digital net P with $C_1, \ldots, C_s \in \mathbb{R}^{n \times m}$, we have

$$Q_P(f) - l(f) = \frac{1}{2^m} \sum_{x \in P} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \frac{1}{2^m} \sum_{x \in P} \text{wal}_k(x) - \hat{f}(0)$$

$$= \sum_{k \in P^\perp \setminus \{0\}} \hat{f}(k) + \sum_{k \in P^\perp \setminus \{0\}} \hat{f}(k)$$

$$= \sum_{k \in P^\perp \setminus \{0\}} \hat{f}(k) + \sum_{k \in \mathbb{N}_0^s \setminus \{0\}} \hat{f}(k).$$
What is the second term?

\[Q_P(f) - I(f) = \sum_{k \in P \setminus \{0\}, 2^n \nmid k} \hat{f}(k) + \sum_{k \in \mathbb{N}_0 \setminus \{0\}, 2^n \mid k} \hat{f}(k) \]

- The second term is...
What is the second term?

\[Q_P(f) - I(f) = \sum_{k \in \mathbb{P} \setminus \{0\}} \hat{f}(k) + \sum_{k \in \mathbb{N}_0^s \setminus \{0\}} \hat{f}(k) \]

- The second term is...

\[\sum_{k \in \mathbb{N}_0^s \setminus \{0\}} \hat{f}(k) = \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \frac{1}{2^{ns}} \sum_{i_1, \ldots, i_s = 0}^{2^{n-1}} \text{wal}_k \left(\frac{i_1}{2^n}, \ldots, \frac{i_s}{2^n} \right) - \hat{f}(0) \]

\[= \frac{1}{2^{ns}} \sum_{i_1, \ldots, i_s = 0}^{2^n-1} \sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k \left(\frac{i_1}{2^n}, \ldots, \frac{i_s}{2^n} \right) - I(f) \]

\[= \frac{1}{2^{ns}} \sum_{i_1, \ldots, i_s = 0}^{2^n-1} \hat{f} \left(\frac{i_1}{2^n}, \ldots, \frac{i_s}{2^n} \right) - I(f) \]

the integration error for a regular grid!
Digital net as a subset of regular grid

\[Q_P(f) - I(f) = \sum_{k \in P_1 \setminus \{0\}} \hat{f}(k) + \left[\frac{1}{2^{ns}} \sum_{i_1, \ldots, i_s = 0}^{2^n - 1} f \left(\frac{i_1}{2^n}, \ldots, \frac{i_s}{2^n} \right) - I(f) \right] \]

Figure: Hammersley point set for \(m = n = 6 \) with regular grid
If f has partial mixed derivatives up to order α in each variable,

$$\frac{1}{2^{ns}} \sum_{i_1, \ldots, i_s=0}^{2^n-1} f \left(\frac{i_1}{2^n}, \ldots, \frac{i_s}{2^n} \right) - I(f)$$

$$= \frac{c_1(f)}{2^n} + \cdots + \frac{c_{\alpha-1}(f)}{2^{(\alpha-1)n}} + O(2^{-\alpha n}),$$

where

$$c_\tau(f) = \sum_{\substack{\tau_1, \ldots, \tau_s \geq 0 \\ \tau_1 + \cdots + \tau_s = \tau}} l(f(\tau_1, \ldots, \tau_s)) \prod_{j=1}^{s} b_{\tau_j}$$

with b_i denoting the i-th Bernoulli number divided by $i!$.

For a detailed proof of this claim, see Dick, G. & Yoshiki (2019).
Using this result, we have

\[Q_P(f) - I(f) = \sum_{\mathbf{k} \in P^\perp \setminus \{0\} \atop 2^n \nmid \mathbf{k}} \hat{f}(\mathbf{k}) + \frac{c_1(f)}{2^n} + \cdots + \frac{c_{\alpha-1}(f)}{2(\alpha-1)n} + O(2^{-\alpha n}). \]
Euler-Maclaurin

Using this result, we have

\[Q_P(f) - I(f) = \sum_{k \in \mathcal{P} \setminus \{0\}, \ 2^n \nmid k} \hat{f}(k) + \frac{c_1(f)}{2^n} + \cdots + \frac{c_{\alpha-1}(f)}{2^{(\alpha-1)n}} + O(2^{-\alpha n}). \]

Consider high precision, say \(n = \alpha m \). Noting that \(N = 2^m \), the first term becomes dominant since

\[Q_P(f) - I(f) = \sum_{k \in \mathcal{P} \setminus \{0\}, \ 2^n \nmid k} \hat{f}(k) + \frac{c_1(f)}{N^\alpha} + \cdots + \frac{c_{\alpha-1}(f)}{N^{\alpha(\alpha-1)}} + O(N^{-\alpha^2}). \]

Remark: For functions with dominating mixed smoothness \(\alpha \), the integration error cannot be better than \(O(N^{-\alpha}) \) in general.
Richardson extrapolation

- Consider the case \(n = m \).
- Let us simplify the situation for a moment and consider the following expansions for successive values of \(m \):

\[
\begin{align*}
I^{(1)}_n &= c_0 + c_1 2^n + c_2 2^{2n} (n+1) + \ldots \\
I^{(1)}_m^{(1)} &= c_0 + c_1 2^m + c_2 2^{2m} (m+1) + \ldots \\
I^{(1)}_m &= c_0 + c_1 2^m + c_2 2^{2m} (m+1) + \ldots
\end{align*}
\]
Richardson extrapolation

- Consider the case \(n = m \).
- Let us simplify the situation for a moment and consider the following expansions for successive values of \(m \):

\[
I^{(1)}_{m-\alpha+1} := c_0 + \frac{c_1}{2^{m-\alpha+1}} + \frac{c_2}{2^{2(m-\alpha+1)}} + \cdots + \frac{c_{\alpha-1}}{2^{(\alpha-1)(m-\alpha+1)}}
\]

\[
I^{(1)}_{m-1} := c_0 + \frac{c_1}{2^{m-1}} + \frac{c_2}{2^{2(m-1)}} + \cdots + \frac{c_{\alpha-1}}{2^{(\alpha-1)(m-1)}}
\]

\[
I^{(1)}_m := c_0 + \frac{c_1}{2^m} + \frac{c_2}{2^{2m}} + \cdots + \frac{c_{\alpha-1}}{2^{(\alpha-1)m}}
\]

Problem: Estimate \(c_0 \) from values of \(I^{(0)}_{m-\alpha+1}, \ldots, I^{(0)}_m \) as precisely as possible (without knowing \(c_1, \ldots, c_{\alpha-1} \)).
Richardson extrapolation

- Do the following recursion: For $\tau = 1, \ldots, \alpha - 1$, compute

 $$I_n^{(\tau+1)} := \frac{2^\tau I_n^{(\tau)} - I_n^{(\tau)}}{2^\tau - 1} \quad \text{for } n = m - \alpha + \tau + 1, \ldots, m$$

 Schematically this recursion goes like

 $\begin{align*}
 I_{m-\alpha+1}^{(1)} & \downarrow \quad I_{m-\alpha+2}^{(1)} \quad \cdots \quad I_{m-\alpha+2}^{(2)} \quad \cdots \quad I_{m-1}^{(1)} \quad \downarrow \quad I_{m}^{(1)} \\
 \quad \downarrow & \quad \downarrow & \cdots & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
 I_{m-\alpha+2}^{(2)} & \downarrow \quad I_{m-\alpha+2}^{(1)} \quad \cdots \quad I_{m-1}^{(2)} \quad \cdots \quad I_{m-1}^{(1)} \quad \downarrow \quad I_{m}^{(2)} \\
 \quad \downarrow & \quad \downarrow & \cdots & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
 \quad \quad \quad \vdots & \quad \quad \quad \cdots \\
 I_{m-1}^{(\alpha-1)} & \quad I_{m}^{(\alpha-1)} \\
 \downarrow & \quad \downarrow \\
 & I_{m}^{(\alpha)}
 \end{align*}$

 - We will end up with $I_m^{(\alpha)} = c_0$. In reality, we have other terms...
Use a set of digital nets

- For $m - \alpha < n \leq m$, let P_n be a digital net with $C_1, \ldots, C_s \in \mathbb{R}^{n \times n}$. Here we do NOT require $P_{m-\alpha+1} \subset P_{m-\alpha+2} \subset \cdots \subset P_m$.

- Richardson extrapolation can push out the intermediate terms of the expansion

$$Q_{P_n}(f) - I(f) = \sum_{\substack{k \in P_n^+ \setminus \{0\} \atop 2^n \mid k}} \hat{f}(k) + \frac{c_1(f)}{2^n} + \cdots + \frac{c_{\alpha-1}(f)}{2^{(\alpha-1)n}} + O(2^{-\alpha n})$$

without knowing $c_1(f), \ldots, c_{\alpha-1}(f)$.
Use a set of digital nets

This way we arrive at an extrapolated QMC rule which satisfies

\[
\sum_{n=m-\alpha+1}^{m} w_n Q_{P_n}(f) - I(f) = \sum_{n=m-\alpha+1}^{m} w_n \sum_{k \in \mathcal{P}_n \setminus 0, 2^n \mid k} \hat{f}(k) + O(2^{-\alpha m}),
\]

where \(w_n \)'s depend only on \(\alpha \),

\[
\sum_{n=m-\alpha+1}^{m} w_n = 1 \quad \text{and} \quad \sum_{n=m-\alpha+1}^{m} |w_n| \leq \prod_{i=1}^{\alpha-1} \frac{2^{i} + 1}{2^{i} - 1}.
\]

NOTE: The total number of points is \(2^{m-\alpha+1} + \cdots + 2^{m} < 2^{m+1} \).
What we want

\[\sum_{n=m-\alpha+1}^{m} w_n Q P_n(f) - I(f) = \sum_{n=m-\alpha+1}^{m} w_n \sum_{k \in P_n^\perp \setminus \{0\}} \hat{f}(k) + O(2^{-\alpha m}), \]

- If we have digital nets with $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times n}$ which satisfy
 \[\sum_{k \in P_n^\perp \setminus \{0\}} \hat{f}(k) = O(2^{-(\alpha-\varepsilon) n}) \quad \text{with arbitrarily small } \varepsilon > 0, \]

extrapolated QMC rule achieves the almost optimal rate of convergence for smooth functions.
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC

Application 1: Truncation of higher order nets and sequences

Application 2: Extrapolated polynomial lattice rules
Truncation operator

For $x = (0.\xi_1\xi_2\ldots)_2 \in [0, 1)$, define the map

$$\text{tr}_m(x) := (0.\xi_1\xi_2\ldots\xi_m00\ldots)_2,$$

For a point set $P \subset [0, 1)^s$, we write

$$\text{tr}_m(P) = \{\text{tr}_m(x) | x \in P\},$$

where tr_m is applied componentwise.

If P is a digital net with $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$ for $n \geq m$, $\text{tr}_m(P)$ is a digital net with upper $m \times m$ submatrices of C_1, \ldots, C_s.
What G. (2019+) proves

Theorem

Let P be an order α digital (t, m, s)-net. For functions with dominating mixed smoothness $\alpha \geq 2$, we have

$$
\sum_{k \in (\text{tr}_m(P)) \perp \{0\}, 2^m \nmid k} \hat{f}(k) = O \left(\frac{(\log N)^{\alpha s}}{N^\alpha} \right),
$$

with $N = 2^m$.

Compare:

$$
\sum_{k \in P \perp \{0\}} \hat{f}(k) = O \left(\frac{(\log N)^{\alpha s}}{N^\alpha} \right) \quad \text{but} \quad \sum_{k \in (\text{tr}_m(P)) \perp \{0\}} \hat{f}(k) = O \left(\frac{1}{N} \right)
$$
Truncation of higher order digital nets

Figure: Interlaced Sobol’ point sets: original (left) and after truncation (right)
Numerical results: original higher order QMC

- Univariate test function:
 \[f(x) = x^3 (\log x + 0.25). \]

- Interlaced Sobol’ sequences: If \(\alpha m > 52 \), \(tr_{52} \) is applied.

![Graph showing the absolute integration error for different orders and Sobol' sequences]
Numerical results: extrapolation

\[Q_P(f) - I(f) = \sum_{k \in \mathcal{P} \setminus \{0\}} \hat{f}(k) + \frac{c_1(f)}{2^n} + \cdots + \frac{c_{\alpha-1}(f)}{2(\alpha-1)n} + O(2^{-\alpha n}). \]

- Extrapolation applied to truncated interlaced Sobol’ sequences: order 2 (left) and order 3 (right)
Numerical results: comparison for large s

- Test function:

$$f(x) = \prod_{j=1}^{s} \left[1 + \gamma_j \left(x_j^c - \frac{1}{c+1} \right) \right],$$

with $s = 100$, $c = 1.3$ and $\gamma_j = j^{-2}$.
Outline

- QMC and digital nets/sequences
- Classical QMC
- Higher order QMC
- Richardson extrapolation and QMC
- Application 1: Truncation of higher order nets and sequences
- Application 2: Extrapolated polynomial lattice rules

Theorem

Let \(p \in \mathbb{F}_2[x] \) be irreducible with \(\deg(p) = m \). Component-by-component algorithm based on a computable criterion can find good \(q \in (\mathbb{F}_2[x])^s \) which satisfies

\[
\sum_{k \in P(p,q)^\perp \setminus \{0\}} \hat{f}(k) = O(2^{-(\alpha-\varepsilon)m}) \quad \text{with arbitrarily small } \varepsilon > 0,
\]

for functions with dominating mixed smoothness \(\alpha \).

Here “a computable criterion” has been provided by Baldeaux, Dick, Leobacher, Nuyens & Pillichshammer (2012), which stems from the decay of Walsh coefficients for smooth functions.
Construction cost

- Since we do NOT require $P_{m-\alpha+1} \subset P_{m-\alpha+2} \subset \cdots \subset P_m$, polynomial lattice point set of each size can be constructed independently.

- Construction cost of each is of $O((s + \alpha)n2^n)$. In total, the cost will be of order

$$\sum_{n=m-\alpha+1}^{m} (s + \alpha)n2^n \leq (s + \alpha)N \log_2 N,$$

where $N = 2^{m-\alpha+1} + \cdots + 2^m$. This is better than interlaced polynomial lattice point sets for which we need $O(\alpha sN \log N)$.
Fast QMC matrix-vector product

- In some applications, we want to estimate the integral of the form

\[
\int_{[0,1]^s} f(Ax) \, dx.
\]

In terms of computational cost, computing \(Ax \) can be dominant.

- Even if \(A \) does not have any special structure, this computation can be made fast by using (polynomial) lattice point sets (Dick, Kuo, Le Gia, Schwab, 2015).

- This strategy does not work for interlaced polynomial lattice rules, whereas it does work for extrapolated polynomial lattice rules.
Numerical results ($\alpha = 2$)

- Test function:

$$f(x) = \prod_{j=1}^{s} \left[1 + \frac{\gamma_j}{1 + \gamma_j x^2} \right],$$

with $s = 100$ and $\gamma_j = j^{-2}$.

- Extrapolated rule with $\alpha = 2$ (red), interlaced rule with $\alpha = 2$ (green)
Numerical results ($\alpha = 3$)

- Test function:
 \[
 f(x) = \prod_{j=1}^{s} \left[1 + \frac{\gamma_j}{1 + \gamma_j x_j^2} \right],
 \]

 with $s = 100$ and $\gamma_j = j^{-2}$.

- Extrapolated rule with $\alpha = 3$ (red), interlaced rule with $\alpha = 3$ (green)
Conclusions

- As far as I know, this is the first attempt to apply an extrapolation technique to QMC. Roughly speaking, Richardson extrapolation is shown useful for reducing necessary precision significantly.

- Two results are obtained so far
 1. truncation of higher order digital nets/sequences: high-order convergence can be recovered by applying Richardson extrapolation.
 2. introduction of extrapolated polynomial lattice rules: without relying on interlacing, we can construct high-order convergent QMC-based rules.

Do we have another good application of extrapolation? What about lattice rules?
Can we randomize extrapolated QMC rule? Partially yes, if the same randomly chosen digital shift is applied. What about scrambling?
Conclusions

- As far as I know, this is the first attempt to apply an extrapolation technique to QMC. Roughly speaking, Richardson extrapolation is shown useful for reducing necessary precision significantly.

- Two results are obtained so far
 1. Truncation of higher order digital nets/sequences: high-order convergence can be recovered by applying Richardson extrapolation.
 2. Introduction of extrapolated polynomial lattice rules: without relying on interlacing, we can construct high-order convergent QMC-based rules.

- Do we have another good application of extrapolation? What about lattice rules?

- Can we randomize extrapolated QMC rule? Partially yes, if the same randomly chosen digital shift is applied. What about scrambling?
If you are interested, please refer to

Thank you for your attention!